Design For The Future Transportation Infrastructure

A Risk-Based Approach

PRESENTED BY
Peter Cusolito, CEM, CFM
MAY 20, 2014
Why Plan?

- Predictable changes in the climate will increase the stress on our transportation infrastructure
- Stresses on system will result in decreased capacity
- Decreased capacity will impact congestion
- Transportation infrastructure impacts every part of our lives
Cost of Routine Delay

- $121 billion
- 5.5 billion extra hours
- 2.9 billion gallons of extra fuel
- 56 billion pounds of additional carbon dioxide
- Reductions in capacity

Source: 2012 Urban Mobility Report, Texas A&M Transportation Institute
Gap Analysis Process

Step 1
Identify Threats and Hazards
- Natural
- Technological
- Human Caused
- Based on historical occurrences and probability models.
- Assess Probability and Impact of each threat/hazard

Step 2
Identify Critical Infrastructure and Key Resources (CI/KR)
- What the CI/KR is required to do
- Identify dependencies and interrelationships

Step 3
Assess Vulnerabilities
- Functionality
- Structural Integrity
- Environmental Considerations
- Accessibility

Step 4
Current and Planned Activities
- Vulnerabilities already being addressed
- Improvement plans

Step 5
Gap Analysis
- Gap between CI/KR requirement and existing or planned capability

Step 6
Findings
- Identify resolutions to minimize or eliminate the gap
 - Resiliency
 - Redundancy
 - Development
Vulnerability Assessment

- Identify Hazards
- Provide Context
- Identify Critical Infrastructure
- Assess Probability
- Assess Consequences
- Prioritize Efforts
Identify the Hazards

<table>
<thead>
<tr>
<th>Natural</th>
<th>Technological</th>
<th>Human-caused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resulting from acts of nature</td>
<td>Involves accidents or the failures of systems and structures</td>
<td>Caused by the intentional actions of an adversary</td>
</tr>
<tr>
<td>Avalanche</td>
<td>Airplane crash</td>
<td>Civil disturbance</td>
</tr>
<tr>
<td>Disease outbreak</td>
<td>Dam/levee failure</td>
<td>Cyber incidents</td>
</tr>
<tr>
<td>Drought</td>
<td>Hazardous materials release</td>
<td>Sabotage</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Power failure</td>
<td>School violence</td>
</tr>
<tr>
<td>Epidemic</td>
<td>Radiological release</td>
<td>Terrorist acts</td>
</tr>
<tr>
<td>Flood</td>
<td>Train derailment</td>
<td></td>
</tr>
<tr>
<td>Hurricane</td>
<td>Urban conflagration</td>
<td></td>
</tr>
<tr>
<td>Landslide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tornado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsunami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volcanic eruption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildfire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter storm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identify the Hazards

<table>
<thead>
<tr>
<th>Natural</th>
<th>Technological</th>
<th>Human-caused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resulting from acts of nature</td>
<td>Involves accidents or the failures of systems and structures</td>
<td>Caused by the intentional actions of an adversary</td>
</tr>
<tr>
<td>- Avalanche</td>
<td>- Airplane crash</td>
<td>- Civil disturbance</td>
</tr>
<tr>
<td>- Disease outbreak</td>
<td>- Dam/levee failure</td>
<td>- Cyber incidents</td>
</tr>
<tr>
<td>- Drought</td>
<td>- Hazardous materials release</td>
<td>- Sabotage</td>
</tr>
<tr>
<td>- Earthquake</td>
<td>- Power failure</td>
<td>- School violence</td>
</tr>
<tr>
<td>- Epidemic</td>
<td>- Radiological release</td>
<td>- Terrorist acts</td>
</tr>
<tr>
<td>- Flood</td>
<td>- Train derailment</td>
<td></td>
</tr>
<tr>
<td>- Hurricane</td>
<td>- Urban conflagration</td>
<td></td>
</tr>
<tr>
<td>- Landslide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tornado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tsunami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Volcanic eruption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Wildfire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Winter storm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identify the Hazards

<table>
<thead>
<tr>
<th>Natural</th>
<th>Technological</th>
<th>Human-caused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resulting from acts of nature</td>
<td>Involves accidents or the failures of systems and structures</td>
<td>Caused by the intentional actions of an adversary</td>
</tr>
<tr>
<td>- Avalanche
- Disease outbreak
- Drought
- Earthquake
- Epidemic
- Flood
- Hurricane
- Landslide
- Tornado
- Tsunami
- Volcanic eruption
- Wildfire
- Winter storm</td>
<td>- Airplane crash
- Dam/levee failure
- Hazardous materials release
- Power failure
- Radiological release
- Train derailment
- Urban conflagration</td>
<td>- Civil disturbance
- Cyber incidents
- Sabotage
- School violence
- Terrorist acts</td>
</tr>
</tbody>
</table>
Billion Dollar Weather Disasters 1980-2010

NOAA's
National Climatic Data Center

Dollar amounts shown are approximate damages/costs in $ billions.
Location shown is the general area for the regional event. Several hurricanes made multiple landfalls.

Additional information for these events is available at NCDC WWW site www.ncdc.noaa.gov/cdr/reports/billionz.html

The U.S. has sustained 99 weather related disasters over the last 30 years with overall damages/costs exceeding $1.0 billion for each event. Total costs for the 99 events exceed $725 billion using a GNP inflation index.
Components of Transportation Infrastructure

- Fixed Node
- Fixed Route
- Vehicles
- People
Lifecycle Management – Planning Horizon

- Roads built with 20-50 year lifespan
- Bridges built with 30-75 year lifespan
- Rail built with 25 year* lifespan
Assessing Vulnerabilities

- Capacity
- Materials
- Functionality
U.S. National Climate Assessment
Transportation Key Messages

- Reliability & Capacity at Risk
 - Systems not designed for extreme weather events

- Coastal Impacts
 - Increased temporary and permanent flooding

- Weather Disruptions
 - Increased frequency

- Costs & Adaptation Options
 - Land use planning
 - Risk assessment
 - New Design
 - Asset Management
 - Response
Addressing the Problem Consequences

- Adapt existing infrastructure
- Eliminate unnecessary infrastructure
- Replace existing infrastructure
- Design for the future